Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marilyn M. Olmstead,* Meera Sheffrin and Feilong Jiang

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA

Correspondence e-mail:
olmstead@chem.ucdavis.edu

Key indicators

Single-crystal X-ray study
$T=140 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.114$
Data-to-parameter ratio $=25.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-bromo-bis[(methyl isocyanide- κC)-(triphenylphosphine- κ P)silver(I)]

The dimeric title molecule, $\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, has crystallographic inversion symmetry. The two bridging $\mathrm{Ag}-$ Br lengths are similar, at 2.7301 (6) and 2.7284 (7) \AA.

Received 9 July 2004 Accepted 13 July 2004 Online 17 July 2004

Comment

The title complex, (I), has a center of symmetry, distorted tetrahedral geometry about the Ag atom, and mid-range $\mathrm{Ag}-$ P and $\mathrm{Ag}-\mathrm{C}$ distances. However, the bridging $\mathrm{Ag}-\mathrm{Br}$ distances are more nearly equal than those seen in two other dimeric complexes with bis-triphenylphosphine ligand sets, viz. 2.701 (8)/2.733 (9) \AA (Gotsis et al., 1989) and 2.7350 (6)/ 2.8241 (5) \AA (Cox et al., 2000). The distance between the bridged Ag atoms is 3.5486 (8) \AA.

(I)

Experimental

The title compound crystallized directly from the reaction mixture of $\left[\mathrm{AgBr}\left(\mathrm{PPh}_{3}\right)\right]_{4}$ and four equivalents of methyl isocyanide in methanol.

Crystal data

$\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$	$Z=1$
$M_{r}=982.21$	$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.3490(17) \AA$	Cell parameters from 30
$b=9.2120(15) \AA$	reflections
$c=13.8990(15) \AA$	$\theta=6.4-21.9^{\circ}$
$\alpha=83.301(11)^{\circ}$	$\mu=3.23 \mathrm{~mm}^{-1}$
$\beta=79.651(13)^{\circ}$	$T=140(2) \mathrm{K}$
$\gamma=65.499(14)^{\circ}$	Block, colorless
$V=955.8(3) \AA^{\circ}$	$0.40 \times 0.24 \times 0.15 \mathrm{~mm}$
Data collection	
Siemens $R 3$ diffractometer	$\theta_{\text {max }}=30.0^{\circ}$
ω scans	$h=-11 \rightarrow 11$
refined from $\Delta F(X A B S 2 ;$ Parkin	$k=-12 \rightarrow 12$
et al., 1995)	$l=0 \rightarrow 19$
$T_{\text {min }}=0.433, T_{\text {max }}=0.619$	2 standard reflections
5582 measured reflections	every 198 reflections
5582 independent reflections	intensity decay: $<0.1 \%$
4498 reflections with $I>2 \sigma(I)$	

$\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=982.21$
Triclinic, $P 1$
(17) A
$b=9.2120$ (15) A
$\alpha=83.301$ (11) ${ }^{\circ}$
$\beta=79.651(13)^{\circ}$
$\gamma=65.499(14)^{\circ}$

Data collection

siemens R3 diffractometer
refined from $\triangle F(X A B S 2$; Parkin
et al., 1995)
$T_{\min }=0.433, T_{\max }=0.619$
5582 independent reflections
4498 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.706 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 30 \\
& \quad \text { reflections } \\
& \theta=6.4-21.9^{\circ} \\
& \mu=3.23 \mathrm{~mm}^{-1} \\
& T=140(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.40 \times 0.24 \times 0.15 \mathrm{~mm} \\
& \\
& \theta_{\text {max }}=30.0^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 12 \\
& l=0 \rightarrow 19 \\
& 2 \text { standard reflections } \\
& \text { every } 198 \text { reflections } \\
& \text { intensity decay: }<0.1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0565 P)^{2}\right.} \\
&+2.5564 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.58 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.114$
$S=1.04$
5582 reflections
218 parameters H -atom parameters constrained

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Primed atom labels correspond to symmetry code (i) in Table 1.

References

Cox, P. J., Aslanidis, P., Karagiannidis, P. \& Hadjikakou, S. (2000). Inorg. Chim. Acta, 310, 268-272.
Gotsis, S. L. M., Engelhardt, L. M., Healy, P. C., Kildea, J. D. \& White, A. H. (1989). Aust. J. Chem. 42, 923-931.

Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (1994). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1991). P3-PC (Version 4.23) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

